E nantioselective synthesis of 2-isocephem and 2-isooxacephem antibiotics

H ajime Nitta, ${ }^{\text {a }}$ Ikuo U eda ${ }^{\text {a }}$ and M inoru H atanaka* ${ }^{\text {,b }}$

${ }^{\text {a }}$ The Institute of Scientific and Industrial Research, O saka U niversity, M ihogaoka, Ibaraki, Osaka 567, Japan
${ }^{\mathrm{b}}$ D epartment of Applied C hemistry and Biotechnology, Faculty of E ngineering, Fukui U niversity, Bunkyo, Fukui 910, J apan

Abstract

The azido lactone 8 was prepared in a highly stereoselective manner by introduction of an azide function to the lactone 6 derived from L -aspartic acid, and then was converted into ($2 \mathrm{~S}, 3 \mathrm{~S}$)-3-amino-2-azido-4hydroxybutanoic acid 4. Four-component condensation of the amino acid 4, p-nitrobenzyl isocyanide and formaldehyde or 2,2-diethoxyacetaldehyde furnished the corresponding 3,4-cis-azetidinone 16 or 26 in excellent yield. 3-M ethoxy-2-isooxacephalosporin was prepared by the intramolecular acylation of imidazolide 23 derived from compound 16. 3-U nsubstituted 2-isocephem and 2-isooxacephem analogues were prepared from the azetidinone 26.

Introduction

Synthesis of the nuclear analogues of β-lactam antibiotics has attracted considerable interest. A wide range of structure types have been made available by total synthesis, and led to testing for antibacterial activity. 2-Isocephalosporin 1 and 2-isooxacephalosporin 2 have been shown to have potent antibacterial activity in their derivatives bearing hydrogen, methyl, and substituted methyl as the C-3 substituents. ${ }^{1}$ A Ithough one of the enantiomers exhibits superior activity as is the case with all β-lactam antibiotics, many previous syntheses led to racemic mixtures. ${ }^{2}$ Several efforts have been directed to the synthesis of the enantiomerically pure forms. The primary problem is the construction of the cis-oriented chiral centres at the azetidinone ring. The existing methods for the syntheses of these com-

1

2
pounds involve an asymmetric ketene-imine cycloaddition reaction as a key step in which a chiral auxiliary was incorporated in either imine or ketene form. ${ }^{12,1 b, 3,4}$ Our solution of this problem is to use ${ }_{\mathrm{L}}$-aspartic acid as a chiral starting material (Scheme 1). We expected that the β-amino acid $\mathbf{4}$ having the desired two

Scheme 1
contiguous chiral centres could be derived via introduction of an azide group to the amino lactone 3, which was readily available from l-aspartic acid. Subsequent four-component conden-
sation on the amino acid can provide ($3 \mathrm{~S}, 4 \mathrm{~S}$)-azetidinones having the functionality suitable to build up the fused 6 membered heterocyclic ring. In this paper we report the details of the enantioselective syntheses of 2-isocephem and 2-isooxacephems. ${ }^{5}$

Results and discussion

Synthesis of (2S,3S)-3-amino-2-azido-4-hydroxybutanoic acid The (S)-lactones 6 and $\mathbf{7}$ were prepared by the reduction of N protected L-aspartic anhydrides 3 and 5 with NaBH_{4} in good yields (Scheme 2). ${ }^{6}$ Treatment of compound 6 with 2 mol equiv.

Scheme 2 Reagents and conditions: i, $\mathrm{NaBH}_{4}, \mathrm{THF} ; \mathrm{ii}, \mathrm{LDA}, \mathrm{THF}$; iii, TsN_{3}; iv, TFA; v, A mberliteIR A-45
of lithium diisopropylamide (LDA) in tetrahydrofuran (THF) at $-67^{\circ} \mathrm{C}$ followed by toluene-p-sulfonyl azide gave the desired trans azide lactone 8 in 50% yield. Stereochemistry of compound 8 was established on the basis of the observed coupling constant ($\mathrm{J}_{2,3} 7.9 \mathrm{~Hz}$) and no observation of a nuclear Overhauser enhancement (NOE) between H-2 and H-3 in the ${ }^{1} \mathrm{H}$ NM R spectrum. Although alkylation of the lactone $\mathbf{7}$ has been
reported to be accompanied by significant amounts of the cis isomer beside the trans isomer, ${ }^{7}$ the introduction of the azide group to lactone 6 proceeded in a highly stereoselective fashion and the formation of the cis azide was not detected. A ttempted hydrolysis of the lactone ring of compound 8 with aqueous alkali failed and led to the elimination of tert-butoxyformamide However, opening of the lactone ring occurred simultaneously when the C-3 amino-protecting group was removed. Thus, deprotection of 8 with trifluoroacetic acid (TFA) and successive neutralization of the resulting trifluoroacetate with A mberliteIRA - 45 in aq. methanol gave the crystalline amino acid 4 in 76% yield.

Synthesis of 3-methoxy-2-isooxacephalosporin

There are few reports concerning the synthesis of 3 heterosubstituted 2-isooxacephalosporins, although their biological activity is interesting because the corresponding 3 methoxycephalosporins show potent activity. ${ }^{8}$ Previously we described how 3-hydroxycarbacephem and 2-oxocarbapenem ring systems could be prepared via an intermolecular acylation reaction as a key step. ${ }^{9}$ This methodology was evaluated for our present purposes.
A model experiment for the construction of the 3-methoxy-2-iso-oxacephem ring system was examined with the 0 -protected amino acid 10 (Scheme 3). The amino acid was prepared from

Scheme 3 Reagents and conditions: i, $\mathrm{K}_{2} \mathrm{CO}_{3}$; ii, $\mathrm{CH}_{2} \mathrm{~N}_{2} ; ~ i i i, 2,3-$ dihydropyran, TsOH; iv, KOH ; v, Pd-C, $\mathrm{H}_{2} ;$ vi, $\mathrm{HCHO}, \mathrm{CNPNB}$, MeOH ; vii, $\mathrm{N}_{2} \mathrm{O}_{4}$; viii, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, reflux; ix, HClO_{4}, aq. 1,4-dioxane; x, CDI; xi, LHDMS, THF, $-78^{\circ} \mathrm{C}$. CNPNB $=p$-nitrobenzyl isocyanide, $C D I=1,1^{\prime}$-carbonyldiimidazole, LHDMS $=$ lithium hexamethyldisilazide
the (3S)-lactone 7 in 85% overall yield via straightforward sequences consisting of hydrolysis with $\mathrm{K}_{2} \mathrm{CO}_{3}$, esterification with diazomethane, protection of the resulting hydroxy group, and removal of the other protective groups by alkali hydrolysis and hydrogenolysis. When a four-component condensation of
amino acid 10, formaldehyde and p-nitrobenzyl isocyanide (CN PN B) was carried out in a very dilute methanol solution at room temperature for 12 h , the azetidinone 11 was obtained in 78% yield. The p-nitrobenzylamide entity was then converted into the p-nitrobenzyl ester via N -nitrosation and a thermal rearrangement in refluxing CCl_{4}. Subsequent acid treatment gave the p-nitrobenzyl ester 12.
Intramolecular acylation of various carbamate derivatives of alcohol 12 was next investigated. When the phenylthiocarbamate of alcohol 12 was subjected to intramolecular acylation by means of the procedure analogous to that reported, ${ }^{9}$ only a low yield (10% or less) of compound $\mathbf{1 5}$ was obtained. In addition, attempted intramolecular acylation of the other carbamates, including the chlorocarbamate and phenoxycarbamate of alcohol 12, resulted in no formation of bicycle 15. The best results were accomplished with the Nimidazolylcarbonyl entity as a carbamoyl group. Compound $\mathbf{1 2}$ was treated with 1,1'-carbonyldiimidazole(CDI) to give the carbamate $\mathbf{1 3}$ in 87% yield. Treatment of imidazolecarboxylate 13 with 2 mol equiv. of lithium hexamethyldisilazide (LHMDS) in THF at $-78^{\circ} \mathrm{C}$ for 3 min and successive quenching with acetic acid produced the crude 3 -hydroxy-2-isooxacephem 14. Compound 14 was labile and hence was treated without purification with an excess of diazomethane to give the desired 3-methoxy2 -isooxacephem 15 in 64% yield from azetidinone 13 . Thus, an efficient method for the construction of the 3-methoxy-2-isooxacephem ring system was established.
The ($25,3 S$)-azido amino acid 4 was next subjected to the four-component condensation with formaldehyde and CNPNB to givethe ($3 \mathrm{~S}, 4 \mathrm{~S}$)-azidoazetidinone 16 in 96% yield (Scheme4).

Scheme 4 Reagents and conditions: i, HCHO, CNPNB, MeOH; ii, TBDMSCI; iii, $\mathrm{N}_{2} \mathrm{O}_{4}$; iv, $\mathrm{CICH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, reflux; v, HCl ; vi, CDI ; vii, LHMDS, $-78^{\circ} \mathrm{C}$; viii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; ix, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N} ; x, \mathrm{PhCH}_{2} \mathrm{COCl}$

The cis-orientation of the $\mathrm{C}-3$ and $\mathrm{C}-4$ hydrogens of compound 16 was confirmed by the observed coupling constant () ${ }_{3,4} 5.1$ Hz) in the ${ }^{1} \mathrm{H}$ NMR spectrum. A fter the hydroxy group of compound $\mathbf{1 6}$ was protected with tert-butyldimethylsilyl chloride (TBDM SCI), the p-nitrobenzylamide was transformed via N -nitrosation with $\mathrm{N}_{2} \mathrm{O}_{4}$ into the p -nitrobenzyl ester. Removal of the TBDMS group with aq. HCl gave alcohol 18 in 90% yield which was converted upon treatment with CDI into the carbamate 19 in 71% yield. H owever, attempted cyclization of 19 with LHDMS led to the formation of a complex mixture and not the expected 3-methoxy-2-isooxacephalosporin 20. Therefore, we examined prior to cyclization, conversion of the azide group of compound $\mathbf{1 7}$ into an amide because the formation of amide anion would be expected to retard the formation of a carbanion at $\mathrm{C}-3$ during the cyclization process. Reduction of the azide group with $\mathrm{H}_{2} \mathrm{~S}$ in the presence of triethylamine and subsequent acylation with phenylacetyl chloride afforded compound $\mathbf{2 1}$ in 75% yield, which was then converted into the carbamate $\mathbf{2 3}$ in 84% yield. Cyclization of the carbamate $\mathbf{2 3}$ in a manner similar to that described for compound $\mathbf{1 5}$ gave the 3 -methoxy-2-isooxacephalosporin 24 in 53% yield without epimerization at the 3 position. In addition, unfavourable cyclization between the nitrogen and the carbamate leading to bicycle $\mathbf{2 5}$ was not observed.

Synthesis of 2-isocephem and 2-iso-oxacephem nuclei

An azetidinone suitable for the construction of 3-unsubstituted 2-isocephem and 2-isooxacephem targets could be also prepared from the amino acid 4 by a four-component condensation (Scheme 5). When an equimolar mixture of the amino

26

Scheme 5 Reagents and conditions: $\mathrm{i},(\mathrm{EtO})_{2} \mathrm{CHCHO}, \mathrm{CNPNB}$, MeOH ; ii, $\mathrm{M} \mathrm{SCl}, \mathrm{Et}_{3} \mathrm{~N}$; iii, $\mathrm{N}_{2} \mathrm{O}_{4}, \mathrm{~A} \mathrm{CON}$; iv, CCl_{4}, reflux; v, TFA; vi, $\mathrm{Et}_{3} \mathrm{~N}$; vii, $\mathrm{H}_{2} \mathrm{~S}, \mathrm{Et}_{3} \mathrm{~N}$
acid 4, 2,2-diethoxyacetaldehyde and CNPNB was stirred in methanol at room temperature, the cis-azetidinone 26 was obtained as a $1: 1$ mixture of the diastereomers at the $\mathrm{C}-\mathrm{I}^{\prime}$ position in 93% yield.

M ethanesulfonylation of the hydroxy group of compound 26 followed by conversion of the amide group into an ester via N nitrosation gave compound 27 in 57% yield, which corresponded to the key intermediate in the synthesis of 2-isocephem and 2-isooxacephem systems reported by D oyle et al. ${ }^{2 a}$ F inally, according to D oyle's procedure, compound $\mathbf{2 7}$ was converted
into the 7-azido-2-isooxacephem 29 by hydrolysis (TFA) followed by treatment of the resulting vinyl alcoholic intermediate 28 with triethylamine. Alternatively, methanesulfonylation of intermediate 28 and subsequent treatment with hydrogen sulfide furnished the 7-azido-2-isocephem $\mathbf{3 0}$.

Conclusions

We have developed a convenient method for the preparation of 2-isocephem and 2-isooxacephem in an enantioselective fashion. The strategy involves the four-component condensation of (25,35)-amino acid 4 leading to the excellent formation of ($35,4 \mathrm{~S}$)-azetidinones 16 and 26. Intramolecular acylation of imidazolecarboxylate $\mathbf{2 3}$ derived from azide $\mathbf{1 6}$ gave the 3-methoxy-2-isooxacephalosporin 24. 3-U nsubstituted 2 -isocephem 30 and 2-isooxacephem 29 were prepared from the azetidinone 26 using the reported procedure.

Experimental

All mps were measured on a Gallenkamp micro melting point apparatus and are uncorrected. IR spectra were recorded on a Hitachi 260-10 spectrometer. UV spectra were recorded on a Hitachi U-3210 spectrometer. ${ }^{1} \mathrm{H}$ N M R spectra were measured at 270 M Hz on a JEOL 270 EX spectrometer or at 360 M Hz on a Bruker AM-360 spectrometer, using SiM e_{4} as the internal standard. J-Values are given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 68 MHz on a JEOL 270EX spectrometer or at 90 M Hz on a Bruker A M - 260 spectrometer. Solvent peak (CDCl_{3} : $\delta_{c} 77.0$) was used for the internal standard. M ass spectra were recorded on a H itachi M-80B spectrometer. Optical rotations were measured on a Perkin-Elmer 240c polarimeter and $[a]_{\mathrm{D}}$ values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Column chromatography was carried out on silica gel. Extracts were dried over M gSO 4 and evaporated under reduced pressure

(3S)-3-(tert-Butox ycarbonylamino)-4-butanolide 6

The procedure reported for the preparation of compound 7^{6} was modified as follows. To a well stirred suspension of NaBH_{4} $(12.4 \mathrm{~g}, 0.328 \mathrm{~mol})$ in THF $\left(100 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{L}-$ N -(tert-butoxycarbonyl) aspartic acid anhydride 3 ($70 \mathrm{~g}, 0.325$ $\mathrm{mol})$ in THF ($350 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ over a period of 1.5 h . After being stirred for an additional 2 h , the mixture was treated carefully with 6 m aq. hydrochloric acid ($90 \mathrm{~cm}^{3}$), and extracted with ethyl acetate. The organic layer was washed successively with water and brine, dried and evaporated. The remaining oil was dissolved in benzene ($500 \mathrm{~cm}^{3}$) and the solution was heated under reflux using a Dean-Stark apparatus for 3 h . The benzene solution was washed with saturated aq. NaHCO_{3}, dried and evaporated. The resulting solid was recrystallized from ethyl acetate-hexane to give title compound $\mathbf{6}$ as crystals (50 g , 76%), mp $108{ }^{\circ} \mathrm{C}$ (Found: C, 53.47; $\mathrm{H}, 7.23 ; \mathrm{N}, 6.96 . \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{C}, 53.70$; $\mathrm{H}, 7.52$; $\mathrm{N}, 6.96 \%$); $[a]_{D}^{25}-61$ (c 1.0, EtOH); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1770$ and $1680 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right) 1.45(9 \mathrm{H}$, $\left.\mathrm{S}, \mathrm{CM} \mathrm{e}_{3}\right), 2.47(1 \mathrm{H}$, dd, J 3.6 and $17.8,2-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.9$ and 17.8, 2-H), $4.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0,4-\mathrm{H}), 4.47-4.53(2 \mathrm{H}, \mathrm{m}, 3-$ and $4-\mathrm{H})$ and $5.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}\left(68 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 28.2$, 34.8, 47.6, 73.7, 80.3, 155.1 and 157.3.

(2S,3S)-2-A zido-3-(tert-butoxycarbonylamino)-4-butanolide 8

A solution of compound $6(5 \mathrm{~g}, 24.9 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was added at $-78{ }^{\circ} \mathrm{C}$ to a solution of LDA prepared from diisopropylamine ($7.35 \mathrm{~cm}^{3}, 52.5 \mathrm{mmol}$) and 1.5 m butyl-lithium-hexane solution ($35 \mathrm{~cm}^{3}, 52.5 \mathrm{mmol}$). The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and treated with a solution of toluene-p-sulfonyl azide ($5.9 \mathrm{~g}, 30 \mathrm{mmol}$) in TH F ($30 \mathrm{~cm}^{3}$). A fter being stirred for 1 h at $-78^{\circ} \mathrm{C}$, the mixture was treated with trimethylsilyl chloride ($9.5 \mathrm{mg}, 75 \mathrm{mmol}$), warmed to $0^{\circ} \mathrm{C}$ over a period of 1 h and then concentrated. The remaining residue was shaken with ice-water ($100 \mathrm{~cm}^{3}$) and ethyl acetate ($100 \mathrm{~cm}^{3}$). The organic layer was dried and evaporated. Column chroma-
tography (benzene-ethyl acetate, $14: 1, \mathrm{v} / \mathrm{v}$) of the residue gave title compound 8 as crystals ($3 \mathrm{~g}, 50 \%$), mp $110-111^{\circ} \mathrm{C}$ (from diisopropyl ether) (Found: C, 44.65; H, 5.76; N, 23.40. $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 44.63; $\mathrm{H}, 5.82 ; \mathrm{N}, 23.14 \%$); $[a]_{0}^{25}-69$ (c 1.0, EtOH$) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2100,1780$ and 1680; $\delta_{\mathrm{H}}(360$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}\right), 4.08-4.14\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{NH}_{2}\right.$ and $4-\mathrm{H}), 4.15(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 7.9,2-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 4.55$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.4$ and $7.4,4-\mathrm{H}$) and $4.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{c}}(67.8$ $\mathrm{M} \mathrm{Hz}) 28.2,53.1,60.4,68.7,81.1,154.9$ and 171.4.

($2 S, 3 S$)-3-A mino-2-azido-4-hydroxybutanoic acid 4

Compound 8 ($5 \mathrm{~g}, 20.7 \mathrm{mmol}$) was treated with TFA ($10 \mathrm{~cm}^{3}$) and anisole $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was condensed to remove the TFA and the residue was taken into water $\left(50 \mathrm{~cm}^{3}\right)$. The solution was washed with diethyl ether, adjusted to pH 6.0 with A mberlite IR A - 45 , and stirred for 6 h while the pH was kept at 6.0 by addition of A mberlite IRA-45. A fter filtration, the filtrate was evaporated to give compound 4 as crystals ($2.5 \mathrm{~g}, 76 \%$), mp $135-137^{\circ} \mathrm{C}$ (from aq. acetone) (Found: C, 30.23; H, 4.98; $\mathrm{N}, 35.03 . \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C , $30.00 ; \mathrm{H}, 5.03 ; \mathrm{N}, 34.99 \%$); [a] ${ }_{\mathrm{D}}^{25}-149$ (c 1.0, water); $\delta_{\mathrm{H}}[270$ $\left.\mathrm{M} \mathrm{Hz;} \mathrm{CD} 3{ }_{3} \mathrm{OD}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.45(1 \mathrm{H}$, ddd, J 5.0, 5.0 and 7.6 , 3H), $3.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6$ and $11.5,4-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $11.5,4-\mathrm{H})$ and $4.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0,2-\mathrm{H}) ; \delta_{\mathrm{c}}\left[67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}-\right.$ $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ 54.9, 60.5, 62.9 and 172.8.
M ethyl 3-(N -benzyloxycarbonylamino)-4-hydroxybutanoate 9
A solution of compound 7 ($10 \mathrm{~g}, 42.5 \mathrm{mmol}$) in 50% aq. acetone ($100 \mathrm{~cm}^{3}$) containing $\mathrm{K}_{2} \mathrm{CO}_{3}(7 \mathrm{~g}, 50 \mathrm{mmol})$ was heated at $50^{\circ} \mathrm{C}$ for 3 h . The cooled mixture was adjusted to pH 2.0 with hydrochloric acid and extracted with ethyl acetate. The extract was treated with an excess of diazomethane-diethyl ether solution. The mixture was treated with several drops of AcOH , washed successively with aq. NaHCO_{3} and brine, dried and evaporated to give ester 9 as an oil (11 g), which was used in the next step without further purification; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400$, 2950, 1730, 1710 and 1690; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.60(2 \mathrm{H}, \mathrm{br}$ d, J 6.3, 2-H H_{2}, $3.23(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6, \mathrm{OH}), 3.63(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.65 $\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{Z}_{2} \mathrm{Ph}\right), 5.70(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{NH})$ and $7.32(5 \mathrm{H}, \mathrm{br}, \mathrm{Ph}) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ $35.5,49.7,51.7,63.8,66.7,127.96,128.03,128.4,136.2,156.2$ and 172.1; m/z $267\left(\mathrm{M}^{+}\right)$.

(3S)-3-A mino-4-(tetrahydropyran-2-yloxy)butyric acid 10

Compound 9 ($11.4 \mathrm{~g}, 42.7 \mathrm{mmol}$) was treated with $2,3-$ dihydropyran ($4.7 \mathrm{~cm}^{3}, 51.6 \mathrm{mmol}$) and toluene p-sulfonic acid hydrate (TsOH) ($0.08 \mathrm{~g}, 0.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ for 1 h at room temperature. The mixture was washed successively with aq. NaHCO_{3} and brine, dried and evaporated. The remaining oil was dissolved in methanol ($50 \mathrm{~cm}^{3}$) and 2 m aq. KOH (20 cm^{3}) was added dropwise. The mixture was stirred overnight at room temperature and evaporated. The residue was taken into water ($30 \mathrm{~cm}^{3}$) and the aqueous solution was washed with diethyl ether, adjusted to pH 2.0 , and extracted with ethyl acetate. The oily residue was dissolved in EtOH ($130 \mathrm{~cm}^{3}$) and hydrogenated at room temperature under atmospheric pressure in the presence of $5 \% \mathrm{Pd}-\mathrm{C}(1.3 \mathrm{~g})$. The oily product was triturated in acetone to give title amino acid 10 ($7.5 \mathrm{~g}, 85 \%$) as crystals, mp $158-160^{\circ} \mathrm{C}$ (from aq. acetone) (Found: C, 50.18 ; H, 9.01; $\mathrm{N}, 7.28 . \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{4}$ requires $\mathrm{C}, 50.25 ; \mathrm{H}, 8.96 ; \mathrm{N}, 7.32 \%$); $[a]_{5}^{25}-31(c 1.0, \mathrm{M} \mathrm{eOH}) ; \delta_{\mathrm{H}}\left[270 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ 1.51-1.85 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.40\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 3.25-$ $3.61\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH} \mathrm{H}_{2}\right), 3.73-3.88\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right)$ and 4.62 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO}$); $\delta_{\mathrm{c}}\left[67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 20.4$, $20.5,26.4,31.4,36.71,36.75,50.4,50.5,63.3,63.4,68.1,68.6$, 100.1, 100.7 and 176.7.

(4S)-1-(p-N itrobenzyIcarbamoylmethyl)-4-(tetrahydropyran-2-yloxymethyl)azetidin-2-one 11

A solution of amino acid $\mathbf{1 0}(4.0 \mathrm{~g}, 19.7 \mathrm{mmol})$, CN PN B (3.3 g , 20.4 mmol) and 35% aq. formaldehyde ($1.8 \mathrm{~g}, 21.7 \mathrm{mmol}$) in
methanol ($400 \mathrm{~cm}^{3}$) was stirred at room temperature for 12 h . The methanol was evaporated off and the residue was dissolved in ethyl acetate. The solution was washed successively with aq. NaHCO_{3} and brine, dried and evaporated to give title azetidinone 11 as an oil ($5.8 \mathrm{~g}, 78 \%$), $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1760,1680$ and $1520 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 378\left(\mathrm{M}^{+}+1\right)$.
p-N itrobenzyl (2S)-2-hydroxymethyl-4-oxoazetidine-1-acetate 12 A solution of amide $11(4.6 \mathrm{~g}, 12.2 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of $\mathrm{N}_{2} \mathrm{O}_{4}(37.4 \mathrm{mmol})$ and sodium acetate $(4.1 \mathrm{~g}, 50 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was then stirred for 1 h at $0^{\circ} \mathrm{C}$. Saturated aq. $\mathrm{NaHCO}_{3}\left(9 \mathrm{~cm}^{3}\right)$ was added and the organic layer was dried and evaporated. The residue was heated in refluxing 1,2dichloroethane ($100 \mathrm{~cm}^{3}$) for 3 h . A fter evaporation of the mixture, column chromatography of the residue gave an oil (3.0 g , 64%). The oil ($2.9 \mathrm{~g}, 7.67 \mathrm{mmol}$) was dissolved in 1,4 -dioxane $\left(24 \mathrm{~cm}^{3}\right)$ and treated with 20% aq. $\mathrm{HClO}_{4}(8 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 30 min at $0^{\circ} \mathrm{C}$, poured into aq. NaHCO_{3} and extracted with ethyl acetate. The organic layer was washed with brine, dried and evaporated to give title ester 12 as crystals ($2.2 \mathrm{~g}, 98 \%$), mp $117-118^{\circ} \mathrm{C}$ (from benzenehexane) (Found: C, 52.98; $\mathrm{H}, 4.89 ; \mathrm{N}, 9.47 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{C}, 53.06 ; \mathrm{H}, 4.80 ; \mathrm{N}, 9.52 \%)$; $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 3520$, 1765 and $1750 ; \delta_{\mathrm{H}}\left(360 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.8$ and $14.6,3-\mathrm{H}$), 3.04 (1 H , dd, J 2.7 and $14.6,3-\mathrm{H}$), $3.24(1 \mathrm{H}, \mathrm{m}$, 2-CHHOH), 3.67 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.86 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{CHHOH}$), 3.86 and $4.47\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 18.4, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 5.29(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH})$ and $8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH})$; $\delta_{\mathrm{c}}\left(90 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 38.6,42.4,54.6,61.4,66.0,123.8,128.6$, 141.8, 147.9, 167.6 and 169.9.

p-N itrobenzyl (2S)-2-(imidazol-1-ylcarbonyloxymethyl)-4-oxoazetidine-1-acetate 13

A solution of the alcohol $\mathbf{1 2}(0.2 \mathrm{~g}, 0.68 \mathrm{mmol})$ and CDI (0.12 $\mathrm{g}, 0.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was stirred at room temperature overnight. The mixture was washed successively with aq. NaHCO_{3} and brine, dried and evaporated to give title diester 13 as an oil $(0.226 \mathrm{~g}, 87 \%)$, $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1770$ and 1750; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{H} \mathrm{z}_{\mathrm{CDCl}}^{3}\right.$) $2.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and 15.0, $3-\mathrm{H}$), $3.25(1$ H , dd, J 5.4 and 15.0, $3-\mathrm{H}$), 4.07 and $4.23(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 18.0$, $\left.\mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.22(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.4$ and 11.8 , 2CHHO), $4.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0$ and $11.8,2-\mathrm{CHHO}), 5.19(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{Ar}$), 7.07 ($1 \mathrm{H}, \mathrm{br}$ s, imidazole H), 7.37 (1 H , br s, imidazole H), $7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}), 8.08(1 \mathrm{H}, \mathrm{s}$, imidazoleH) and 8.22 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(67.8 \mathrm{MHz} \mathrm{CDCl}_{3}\right.$) $40.0,42.4,50.3$, $65.8,67.6,116.9,123.8,128.7,131.0,136.9,148.1,166.0$ and 167.8; m/z (FAB) $389\left(M^{+}+1\right)$.

p-N itrobenzyl (6S)-3-methoxy-8-oxo-4-oxa-1-azabicyclo[4.2.0]

 oct-2-ene-2-carboxylate 15The carbamate 13 ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in THF ($5 \mathrm{~cm}^{3}$) and treated at $-78^{\circ} \mathrm{C}$ with a 1 M LHM DS-hexane solution ($0.78 \mathrm{~cm}^{3}$). The solution was stirred for 3 min at $-78^{\circ} \mathrm{C}$ and then treated with $\mathrm{AcOH}\left(0.044 \mathrm{~cm}^{3}\right)$. The mixture was poured into 5% aq. citric acid ($2 \mathrm{~cm}^{3}$) and extracted with ethyl acetate. The extract of intermediate 14 was washed with water, dried and treated, while cooled in ice, with an excess of diazomethane in diethyl ether. The mixture was then set aside at room temperature for 3 h , and then evaporated. Flash chromatography of the residue on silica gel (benzene-ethyl acetate, $2: 1$, v / v) gave title compound 15 as crystals ($50 \mathrm{mg}, 58 \%$), mp 146$147^{\circ} \mathrm{C}$ (from ethyl acetate-isopropyl ether) (Found: C, 48.13; $\mathrm{H}, 4.61 ; \mathrm{N}, 6.98 . \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{5}$ requires $\mathrm{C}, 48.25 ; \mathrm{H}, 4.55 ; \mathrm{N}$, 7.03%); $[a]_{D}^{25}+188.8\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1775$, 1770 and $1600 ; \delta_{\mathrm{H}}\left(360 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.8$ and $15.0,7-\mathrm{H}$), 3.47 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0$ and $15.0,7-\mathrm{H}$), 3.65 ($1 \mathrm{H}, \mathrm{m}, 6-$ H), 3.90 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.99 (1 H , dd, J 9.7 and $10.7,5-\mathrm{H}$), 4.86 $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.7$ and $10.7,5-\mathrm{H}), 5.22$ and $5.44(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 13.9$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 7.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH})$ and $8.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH})$;
$\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 41.0,41.2,55.8,64.5,72.6,89.7,123.5$, 128.0, 144.0, 147.2, 159.3, 161.8 and $166.4 ; \lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm}$ $274\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 18100\right)$.

(3S,4S)-3-A zido-4-hydroxymethyl-1-(p-nitrobenzylcarbamoyl-methyl)azetidin-2-one 16

By means of the procedure described for the preparation of compound 11, the amino acid $4(0.5 \mathrm{~g}, 3.1 \mathrm{mmol})$ was treated with CNPNB ($0.53 \mathrm{~g}, 3.2 \mathrm{mmol}$) and 35% aq. formaldehyde ($0.28 \mathrm{~g}, 3.3 \mathrm{mmol}$) in methanol ($120 \mathrm{~cm}^{3}$) to give title compound 16 as crystals ($1.0 \mathrm{~g}, 96 \%$). Recrystallization from ethyl acetatediisopropyl ether gave a pure sample, $\mathrm{mp} 91-92^{\circ} \mathrm{C}$ (Found: C, 46.52; $\mathrm{H}, 4.38 ; \mathrm{N}, 24.9 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{5}$ requires $\mathrm{C}, 46.71 ; \mathrm{H}, 4.22$; $\mathrm{N}, 25.14 \%) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2100,1780$ and 1680; $\delta_{\mathrm{H}}[360$ $\left.\mathrm{M} \mathrm{Hz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.84\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{OH}\right), 3.88$ and $4.22(2 \mathrm{H}$, ABq, J $16.8, \mathrm{NCH}_{2} \mathrm{CO}$), $3.96(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right), 4.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1,3-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5, \mathrm{OH}), 7.78$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH}$), $8.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH}$) and $8.66(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NH}) ; \delta_{\mathrm{c}}\left[67.8 \mathrm{M} \mathrm{Hz}\right.$; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 41.6,43.3,58.4,58.5,64.1$, $122.7,127.3,145.3,146.0,164.3$ and 167.3.

p-N itrobenzyl (2S,3S)-3-azido-2-(tert-butyldimethylsiloxy-methyl)-4-oxoazetidine-1-acetate 17

A solution of amide $16(1.0 \mathrm{~g}, 2.99 \mathrm{mmol})$, imidazole ($0.5 \mathrm{~g}, 7.3$ $\mathrm{mmol})$ and TBDM SCI ($0.45 \mathrm{~g}, 2.99 \mathrm{mmol}$) in dimethylformamide (DMF) ($5 \mathrm{~cm}^{3}$) was stirred at room temperature overnight. The mixture was poured into ice-water and extracted with ethyl acetate. The organic layer was washed with brine, dried and evaporated. Column chromatography of the residue gave an oil ($1.2 \mathrm{~g}, 89 \%$).

In the same manner as described for the preparation of compound 12 , the oil ($1.0 \mathrm{~g}, 2.23 \mathrm{mmol}$) was treated with $\mathrm{N}_{2} \mathrm{O}_{4}(6.7$ mmol) to give title ester 17 as an oil ($0.67 \mathrm{~g}, 67 \%$), $v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 2100,1775$ and $1750 ; \delta_{\mathrm{H}}\left(360 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.05(6 \mathrm{H}, \mathrm{s}$, $\mathrm{SiM} \mathrm{e}_{2}$), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e} 3\right.$), $3.84\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{CH}_{2} \mathrm{O}\right), 4.02$ and $4.34\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 18.0, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right.$), $4.05(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.80(1$ H, d, J 5.15, 3-H), $5.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}{ }_{2} \mathrm{Ar}\right), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7$, $\mathrm{ArH})$ and $8.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)-5.7$, $18.0,25.6,42.6,58.1,62.8,65.0,65.7,123.8,128.2,128.6,142.0$, $147.8,164.5$ and $167.3 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 450\left(\mathrm{M}^{+}+1\right)$.

p-N itrobenzyl (2S,3S)-2-(tert-butyldimethylsiloxymethyl)-4-oxo-3-(phenylacetamido)azetidine-1-acetate 21

Hydrogen sulfide gas was bubbled into a solution of azide 17 $(1.0 \mathrm{~g}, 2.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 3 min . Triethylamine ($0.31 \mathrm{~g}, 2.23 \mathrm{mmol}$) was added and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was poured into ice-water and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A fter being dried, the organic layers were treated with pyridine ($0.3 \mathrm{~cm}^{3}, 3.7$ mmol) and phenylacetyl chloride ($0.38 \mathrm{~g}, 2.46 \mathrm{mmol}$) for 30 min at room temperature The mixture was washed with ice-water dried and evaporated. Column chromatography of the residue gave title compound 21 as crystals ($0.9 \mathrm{~g}, 75 \%$), mp 98-99 ${ }^{\circ} \mathrm{C}$ (from benzene-hexane) (Found: C, 59.78; H, 6.22; N, 7.85. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O} \mathrm{Si}_{\mathrm{Si}}$ requires $\left.\mathrm{C}, 59.88 ; \mathrm{H}, 6.46 ; \mathrm{N}, 7.76\right)$; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1770,1750$ and 1680; $\delta_{\mathrm{H}}\left(360 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $0.014\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} 2\right.$), $0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{3}\right), 3.54$ and $3.62(2 \mathrm{H}$, ABq, J 15.5, CH 2 Ar), 3.56 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.7$ and 11.0, 2-CHHO), 3.77 and $4.64\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 18.0, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3.81(1 \mathrm{H}, \mathrm{dd}$, J 2.4 and $11.0,2-\mathrm{CHHO}$), $4.06(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 5.25(2 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{Ar}$), $5.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.15$ and $9.0,3-\mathrm{H}), 6.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$, NH), 7.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0, \mathrm{ArH})$ and $8.25(2 \mathrm{H}$, d, J 9.0, ArH); $\delta_{\mathrm{c}}\left(67.8, \mathrm{M} \mathrm{Hz}_{\mathrm{CDCl}}^{3}\right.$) $-5.7,17.8,25.6,42.0$, $43.3,57.1,58.7,60.8,65.6,123.8,127.2,128.2,128.5,128.8$, $128.9,134.3,141.9,147.8,167.3$ and 171.1.
p-N itrobenzyl ($2 \mathrm{~S}, 3 \mathrm{~S}$)-2-hydroxymethyl-4-oxo-3-(phenyl-acetamido)azetidine-1-acetate 22
A solution of silyl ether $21(0.47 \mathrm{~g}, 0.87 \mathrm{mmol})$ in THF ($5 \mathrm{~cm}^{3}$)
was treated with conc. hydrochloric acid $\left(0.2 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 1 h at room temperature. The solution was poured into ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with aq. NaHCO_{3} and brine, dried and evaporated to give the free alcohol 22 as crystals ($0.35 \mathrm{~g}, 95 \%$), mp 149-150 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate-diisopropyl ether) (Found: $\mathrm{C}, 58.97$; $\mathrm{H}, 5.03 ; \mathrm{N}, 9.78 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, 59.01; H, 4.95; $\mathrm{N}, 9.83 \%) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1770,1740$ and 1680 ; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0$ and 12.7 , 2$\mathrm{CHHOH}), 3.58$ and $3.64\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 15.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.72$ and $4.55\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 18.6, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 3.87(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $2-$ $\mathrm{CHHOH}), 5.25$ and $5.30\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 13.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.62(1 \mathrm{H}$, dd, J 5.15 and $9.5,3-\mathrm{H}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5, \mathrm{NH}), 7.32(5 \mathrm{H}, \mathrm{m}$, Ph), 7.51 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}$) and 8.25 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 42.1,43.6,57.5,58.2,60.3,66.5,124.0$, $127.3,128.86,128.89,129.3,134.1,141.2,148.0,168.0,170.4$ and 171.2.

p-Nitrobenzyl (2S,3S)-2-(imidazol-1-ylcarbonyloxymethyl)-4-ox0-3-(phenylacetamido)azetidine-1-acetate 23

By means of the procedure described for the preparation of compound 14, compound $22(0.26 \mathrm{~g}, 0.6 \mathrm{mmol})$ was treated with a solution of $\mathrm{CDI}(0.12 \mathrm{~g}, 0.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ to give title diester 23 as crystals ($0.28 \mathrm{~g}, 88 \%$), mp $153-154^{\circ} \mathrm{C}$ (from ethyl acetate-diisopropyl ether) (Found: C, 57.47; H, 4.41; $\mathrm{N}, 13.38 . \mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{8}$ requires C , 57.58; $\mathrm{H}, 4.45 ; \mathrm{N}$, $13.43 \%) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1770,1760,1750$ and $1680 ; \delta_{\mathrm{H}}[360$ $\mathrm{MHz}, \mathrm{CDCl}_{3}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 3.56$ and $3.62(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 14.5$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.08$ and $4.20\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 18, \mathrm{NCH}_{2} \mathrm{CO}_{2}\right), 4.26(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H}), 4.48\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1,2-\mathrm{CH}_{2} \mathrm{O}\right), 5.15$ and $5.20(2 \mathrm{H}, \mathrm{ABq}$, J $13.0, \mathrm{CH}_{2} \mathrm{Ar}$), $5.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.1$ and $7.6,3-\mathrm{H}), 7.01(1 \mathrm{H}, \mathrm{br}$ s, imidazole H), 7.26 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.35 (1 H , br s, imidazole H), $7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{ArH}), 7.97(1 \mathrm{H}, \mathrm{s}$, imidazole H) , $8.05(1 \mathrm{H}$, d, J 7.6, NH) and 8.21 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{ArH}$); $\delta_{\mathrm{c}}[67.8 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}-\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 42.0,42.6,56.2,57.6,65.1,65.8,117.3$, 123.4, 126.3, 128.0, 128.6, 128.8, 130.0, 135.5, 137.1, 142.9, 147.2, 147.7, 166.3, 168.2 and 170.9.

p-N itrobenzyl (6S,7S)-3-methoxy-8-0x0-7-phenylacetamido-4-oxa-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate 24

By means of the procedure described for the preparation of compound 15, the carbamate 23 ($30 \mathrm{mg}, 0.057 \mathrm{mmol}$) was treated with a 1 м LHMDS-THF solution ($0.18 \mathrm{~cm}^{3}$) and then with an excess of diazomethane to give title isooxacephem 24 as crystals ($14 \mathrm{mg}, 53 \%$), $\mathrm{mp} 142-143^{\circ} \mathrm{C}$ (from ethyl acetatediisopropyl ether) (Found: C, 59.35; H, 4.32; N, 9.08. $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8}$ requires C, 59.11; H , 4.53; N , 8.99\%); [$\left.\alpha\right]_{D}^{25}+133$ (c $\left.0.3, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 1770,1760$ and 1680; $\delta_{\mathrm{H}}(360$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $3.56\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 3.89 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $4.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.8$ and 10.8, $5-\mathrm{H}$), $4.58(1 \mathrm{H}, \mathrm{dd}$, J 3.9 and $10.8,5-\mathrm{H}$), 5.17 and 5.38 ($2 \mathrm{H}, \mathrm{Abq}, \mathrm{J} 13.7, \mathrm{CH}_{2} \mathrm{Ar}$), $5.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.9$ and $5.3,7-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3, \mathrm{NH}), 7.22-$ $7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7, \mathrm{ArH})$ and $8.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.7, ArH); $\delta_{\mathrm{c}}\left(90 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 43.2,47.4,55.8,59.0,64.5,69.5$, 88.6, 123.6, 127.7, 128.1, 129.0, 129.2, 129.3. 133.9, 143.8, 147.6, 160.2, 161.4, 165.8 and 171.9; $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 271$ (ε 32 600).

(3S,4S)-3-A zido-1-[2',2'-diethoxy-1'-(p-nitrobenzylcarbamoyl)-ethyl\}-4-(hydroxymethyl)azetidin-2-one 26

A solution of amino acid $\mathbf{4}(0.67 \mathrm{~g}, 4.2 \mathrm{mmol}), ~ C N P N B(0.7 \mathrm{~g}$, 4.3 mmol) and diethoxyacetaldehyde ($0.66 \mathrm{~g}, 5 \mathrm{mmol}$) in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was stirred at room temperature overnight and was then evaporated. Column chromatography of the residue (benzene-ethyl acetate, 5:1, v/v) gave title azetidinone 26 $(1.7 \mathrm{~g}, 93 \%)$ as a $1: 1$ diastereomeric mixture, which could be separated by repeated flash chromatography. One isomer: $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2100,1760$ and 1670; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $1.13\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7,6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.43\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{O}\right), 3.75-4.03\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and OH$)$,
4.32 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 4.43 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.0$ and $16.0, \mathrm{NHCHHAr}$), 4.60 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.0$ and 16.0 , N HCHHAr), 4.62 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.0$, 1'-H), 4.86 (1 H, d, J 5.3, 3-H), $5.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.0, \mathrm{OCHO}, 7.45$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH}), 8.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH})$ and $8.60(1 \mathrm{H}, \mathrm{t}$ J 6.0, NH); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right.$) 15.1, 15.2, 42.5, 57.8, 58.8, $59.9,64.4,64.6,65.2,101.2,123.6,128.0,145.6,147.0,166.1$ and 168.1; m/z(FAB) $437\left(\mathrm{M}^{+}+1\right)$.

A nother isomer: $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) / \mathrm{cm}^{-1} 2100,1760$ and 1670 ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.20\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}, \mathrm{t}$, J $7.6, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.52\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{CH}_{2} \mathrm{O}\right), 3.75-4.03(5 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and OH$), 4.27(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6$ and 16.0, N H CH H Ar), 4.56 (1 H, d, J 5.6, 1'-H), 4.68 (1 H , dd, J 6.6 and $16.0, \mathrm{NHCHHAr}), 4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.3,3-\mathrm{H}), 4.94(1 \mathrm{H}$, d, J 5.6, OCHO), $7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH}), 7.52(1 \mathrm{H}, \mathrm{br}$ s, NH) and 8.17 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(67.8 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.9,15.1$, $42.7,57.2,59.6,60.0,62.8,64.5,65.0,100.4,123.7,127.9,145.3$, 147.2 and $166.7 ; \mathrm{m} / \mathrm{z}$ (FAB) $437\left(\mathrm{M}^{+}+1\right)$.
p-N itrobenzyl 2'-[(2S,3S)-3-azido-2-methylsulfonyloxymethyl-4-oxoazetidin-1-yl\}-2'-2'-diethoxypropionate 27
A solution of methanesulfonyl chloride ($0.5 \mathrm{~g}, 4.3 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) was added dropwise to a solution of alcohol 26 $(1.7 \mathrm{~g}, 3.9 \mathrm{mmol})$, in the form of the $1: 1$ isomeric mixture, and triethylamine ($0.7 \mathrm{~cm}^{3}, 5 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter being stirred for 1 h at room temperature, the solution was poured into ice-water ($20 \mathrm{~cm}^{3}$) and extracted with ethyl acetate. The extract was washed with brine, dried and evaporated to give the crude mesyl ester as an oil. The oil was dissolved and dry $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and the solution was added to a 0.7 m $\mathrm{N}_{2} \mathrm{O}_{4}-\mathrm{CHCl}_{3}$ solution ($15 \mathrm{~cm}^{3}$) containing sodium acetate (1.15 $\mathrm{g}, 14 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, washed successively with aq. NaHCO_{3} and brine, dried and evaporated. The residue was then heated in refluxing CCl_{4} for 3 h. A fter cooling and evaporation of the solvents column chromatography of the residue (benzene-ethyl acetate, $2: 1 \mathrm{v} / \mathrm{v}$) gave title mesyl ester 27 as an oil ($1.02 \mathrm{~g}, 57 \%$), $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 2120,1775$ and $1755 ; \mathrm{m} / \mathrm{z}$ (FAB) $516\left(\mathrm{M}^{+}+1\right)$.

p-N itrobenzyl 2'-[(2S,3S)-3-azido-2-methylsulfonyloxymethyl-4-oxoazetidin-1-y|\} 3^{\prime}-hydroxypropenoate 28

Compound 27 ($1.0 \mathrm{~g}, 1.9 \mathrm{mmol}$) was treated with 95% aq. TFA (5 ml) at $50^{\circ} \mathrm{C}$ for 1 h . The mixture was evaporated and the residue was dissolved in ethyl acetate. The solution was washed successively with aq. NaHCO_{3} and brine, dried and evaporated to give title compound 28 as an oil ($0.68 \mathrm{~g}, 81 \%$), which was used in the next step without further purification, $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 2120,1760$ and $1710 ; \delta_{\mathrm{H}}\left[360 \mathrm{M} \mathrm{H} \mathrm{z}^{\prime}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 3.01(3 \mathrm{H}, \mathrm{s}$, OM e), 4.2-4.5 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and 2-CHHOH), $4.48(1 \mathrm{H}, \mathrm{m}, 2-$ CHHOH), 5.10 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.1,3-\mathrm{H}), 5.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.62$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{ArH}$), $7.75\left(\frac{3}{2} \mathrm{H}\right.$, s, vinyl H), $7.90\left(\frac{1}{2} \mathrm{H}, \mathrm{s}\right.$, vinyl H) and $8.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{ArH})$; m/z (FAB) $413\left(\mathrm{M}^{+}+1-\mathrm{CHO}\right)$.

p-N itrobenzyl (6S,7S)-7-azido-8-oxo-4-oxa-1-azabicyclo[4.2.0] oct-2-ene-2-carboxylate 29

Triethylamine ($0.26 \mathrm{ml}, 0.9 \mathrm{mmol}$) was added to a solution of mesyl ester $28(0.4 \mathrm{~g}, 0.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the solution was heated under reflux for 3 h . The solution was washed successively with ice-water, 5% hydrochloric acid, aq. NaHCO_{3} and brine, dried and evaporated to give the isooxacephem 29 as crystals ($0.3 \mathrm{~g}, 94 \%$), which was recrystallized from ethyl acetate-diisopropyl ether to afford a pure sample, mp 149-150 ${ }^{\circ} \mathrm{C}$ (Found: C, 48.72; H, 3.40; N, 20.07. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{6}$ requires $\mathrm{C}, 48.70 ; \mathrm{H}, 3.21 ; \mathrm{N}, 20.28 \%$); $[a]_{\mathrm{D}}^{25}-32.2$ (c 1.0, EtOH); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2100,1770$ and 1700; $\delta_{\mathrm{H}}(360$ $\left.\mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 3.79(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.5$ and 11.3 , $5-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.7$ and $11.3,5-\mathrm{H}$), 5.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.2,7-$ H), 5.28 and $5.43\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J} 13.5, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.04(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH})$ and $8.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{ArH}) ; \delta_{\mathrm{c}}(67.8$

M Hz; CDCl ${ }_{3}$) 46.1, 65.2, 65.9, 68.2, 123.7, 128.3, 142.7, 145.8, 147.6, 161.5 and 163.5; $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 269$ ($\varepsilon 16650$).

p-N itrobenzyl (6S,7S)-7-azido-8-oxo-4-thia-1-azabicyclo[4.2.0] oct-2-ene-2-carboxylate 30

M ethanesulfonyl chloride ($0.049 \mathrm{~g}, 0.42 \mathrm{mmol}$) was added to a solution of mesyl ester 28 ($0.17 \mathrm{~g}, 0.385 \mathrm{mmol}$) and triethylamine ($0.062 \mathrm{~cm}^{3}, 0.385 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$). The mixture was stirred for 1 h at room temperature, poured into ice-water and extracted with ethyl acetate. The organic layer was washed in turn with 5% hydrochloric acid, aq. NaHCO_{3} and brine, dried and evaporated. The remaining oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{H}_{2} \mathrm{~S}$ gas was bubbled in for 3 min at $0^{\circ} \mathrm{C}$. Triethylamine ($0.11 \mathrm{~cm}^{3}, 0.81 \mathrm{mmol}$) was added slowly and the mixture was stirred for 1 h at $5^{\circ} \mathrm{C} . \mathrm{N}$ itrogen gas was bubbled through to remove the $\mathrm{H}_{2} \mathrm{~S}$ and the mixture was poured into ice-water. The organic layer was washed in turn with 5% hydrochloric acid, aq. NaHCO_{3} and brine, dried and evaporated. The residue was triturated in diethyl ether to give title isocephem $\mathbf{3 0}$ as crystals ($70 \mathrm{mg}, 50 \%$), $\mathrm{mp} 147-148^{\circ} \mathrm{C}$ (from ethyl acetatediisopropyl ether) (Found: C, 46.46; H, 3.19; N, 19.33; S, 8.86. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5}$ S requires $\mathrm{C}, 46.54 ; \mathrm{H}, 3.07 ; \mathrm{N}, 19.38 ; \mathrm{S}, 8.87 \%$); $[a]_{D}^{25}$ -46.6 (c 0.5, 1,4 dioxane); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2100,1760$ and 1700; $\delta_{\mathrm{H}}\left(360 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 3.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.8$ and 13, $5-\mathrm{H}), 3.13$ ($1 \mathrm{H}, \mathrm{dd}$, J 9.4 and $13,5-\mathrm{H}$), $3.94(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 5.1, 7-H), 5.29 and $5.41\left(2 \mathrm{H}, \mathrm{A} \mathrm{Bq}, \mathrm{J} 13.0, \mathrm{CH}_{2} \mathrm{Ar}\right), 7.13(1 \mathrm{H}, \mathrm{s}$, 3-H), $7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{ArH})$ and $8.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8, \mathrm{ArH})$; $\delta_{\mathrm{c}}\left(90 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 25.5,49.2,65.9,68.6,120.8,123.3,123.8$, 142.5, 148.0, 159.6 and 161.2; $\lambda_{\max }($ EtOH $) / \mathrm{nm} 302(\varepsilon 13200)$.

Acknowledgements

We are grateful to the M aterial A nalytical Center of ISIR, Osaka University, for mass and NMR spectra and microanalyses.

R eferences

1 (a) T. W. D oyle, J. L. D ouglas, B. Belleau, T. T. Conway, C. F. Ferrari, D. E. H orning, G. Lim, B.-Y. Luh, A . M artel, M . M enard and L. R . M orris, Can. J. C hem., 1980, 58, 2508; (b) H. M astalerz, M . M enard, V. Vinet, J. D esiderio, J. Fung-Tomc, R. K essler and Y. Tsai, J. M ed. Chem., 1988, 31, 1190; (c) H. Tsubouchi, K. Tsuji, K. Y asumura, N. Tada, S. N ishitani, J. M inamikawa and J. Ishikawa, Tetrahedron: A symmetry, 1994, 5, 441.
2 (a) T. W. Doyle, B. Belleau, B.-Y. L uh, T. T. Conway, M. M enard, D. J. Douglas, D. T.-W. Chu, G. Lim, L. R. M orris, P. Rivest and M. Casey, Can. J. Chem., 1977, 55, 484; (b) T. W. D oyle, J. L. Douglas, B. Belleau, J. M eunier and B.-Y. Luh, Can. J. Chem., 1977, 55, 2873; T. T. Conway, G. Lim, J. L. D ouglas, M . M enard, T. W. D oyle, P. Rivest, D. Horning, L. R. M orris and D. Cimon, Can. J. Chem., 1978, 56, 1335; D. B. Bryan, R. F. H all, K . G. H olden, W. F. H uffman and J. G. Gleason, J. A m. Chem. Soc., 1977, 99, 2354.

3 S. M. Tenneson and B. Belleau, C an. J. Chem., 1980, 58, 1605.
4 An alternative approach has been reported: D. A. Evans and E. B. Sjorgen, Tetrahedron Lett., 1985, 26, 3783.
5 Preliminary reports: H. Nitta, M. H atanaka and T. Ishimaru, J. Chem. Soc., Chem. Commun., 1987, 51; H. N itta, M . H atanaka and I. U eda, J. Chem. Soc., Perkin Trans. 1, 1990, 432.

6 G. J. M cG arver, R. N. H iner, Y. M atsubara and T. Oh, Tetrahedron L ett., 1983, 24, 2733.
7 S. W. M cCombie, W. A. M etz and A. A fonso, Tetrahedron Lett., 1986, 27, 305
8 S. Kukolja and R. R. Chauvette, in Chemistry and Biology of β-L actam A ntibiotics, ed. R. B. M orin and M. Gorman, A cademic Press, N ew York, 1982, vol. 1, p. 93.
9 M. H atanaka, Y. Yamamoto, H. Nitta and T. I shimasu, Tetrahedron Lett., 1981, 22, 3883; M. Hatanaka and T. Ishimaru, Tetrahedron Lett., 1983, 24, 4837.

Paper 7/00650K
R eceived 28th J anuary 1997
A ccepted 28th February 1997

